For example,Бобцов

Analysis of the phase images obtained during the collection of a holographic registration system based on the geometric phase effect and a polarization camera

Annotation

The results of measuring the surface depth of the test object using digital holography are presented. The resulting image was compared to a model based on the calibration slide documentation. In the presented holographic microscope, instead of an eyepiece, a lens with a geometric phase effect is used, which converts a beam with linear polarization into a pair of beams with circular polarizations (diverging and converging). The parallel phase shift method was used to obtain phase distribution. Using a polarization camera, four interferograms corresponding to four different linear projections of interfering waves with right and left circular polarizations were recorded in one exposure. Holograms of a phase object-micrometer were obtained, according to which, by the method of parallel phase shift, the distribution of phase lag introduced by the object was restored. To correct the aberration, subtraction of the recorded phase raid of the illuminating wave — the experimentally obtained phase of the wavefront without an object is used. The developed digital holographic phase microscope based on a geometric phase lens and a polarization camera makes it possible to correctly visualize the surface relief profile. The microscope can be used as a tool for monitoring the state of biological objects exposed to external effects.

Keywords

Articles in current issue